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Abstract. We apply a recently proposed Green function Monte Carlo procedure to the study of Hamiltonian
lattice gauge theories. This class of algorithms computes quantum vacuum expectation values by averaging
over a set of suitable weighted random walkers. By means of a procedure called stochastic reconfiguration
the long standing problem of keeping fixed the walker population without a priori knowledge of the ground
state is completely solved. In the U(1)2 model, which we choose as our theoretical laboratory, we evaluate
the mean plaquette and the vacuum energy per plaquette. We find good agreement with previous works
using model-dependent guiding functions for the random walkers.

1 Introduction

Lattice regularization of quantum field theories is a power-
ful technique to compute non-perturbative physical quan-
tities. Its application to quantum chromodynamics has led
to accurate predictions of the spectrum of quark and gluon
states as well as of other phenomena like finite tempera-
ture phase transitions.

The historical development of this active field of re-
search developed along two main streams: the Lagrangian
approach proposed by Wilson in 1974 [1] and the Hamil-
tonian formulation derived by Kogut in 1975 [2]. The two
approaches are equivalent in the continuum limit but, for
the purpose of analytical or numerical investigations, they
offer quite different advantages.

The Lagrangian approach exploits Feynman’s old idea
of computing quantum partition functions as sums over
classical histories. Vacuum expectation values are obtained
by evaluating suitable statistical averages over long time
trajectories. The basic object in this approach is the clas-
sical trajectory whose full temporal evolution must be re-
tained. Space and time are treated in a symmetric way and
a field configuration is defined over a space-time discrete
lattice. The identification of a d dimensional Euclidean
quantum theory with a d+1 dimensional statistical model
is full. We remark that the Lagrangian approach is the cur-
rent technique for the study of QCD mass spectra and the
most precise studies [3] suggest the advantage of working
on anisotropic lattices with a different treatment of the
spatial and temporal discretization. In particular, the use
of spatially coarse, temporally fine lattices has greatly in-
creased the efficiency of the numerical simulations [4].

These considerations lead to a renewed interest in the
Hamiltonian formulation where only space is discretized
and time remains continuous. This is a very natural ap-

proach in the study of low energy physics. Given the
HamiltonianH of a quantum many body model, its ground
state is projected out by the application of the evolution
operator U(t) = exp(−tH), with t → +∞, to any state
with the same quantum numbers of the vacuum. Any ac-
curate representation of the asymptotic behavior of U(t)
provides access to the ground state and to the low lying
excitations. These representations perform clever repeated
applications of H, in an analytical or stochastic way, to
specific quantum states that replace in this approach the
role played by classical trajectories in the Lagrangian one.

One of the first striking examples of this strategy can
be found in [5] where the authors obtain good scaling mea-
sures of the mass gap in several non-trivial models by ana-
lytical Lanczos diagonalization of the Hamiltonian. Many
other analytical techniques have been developed based on
similar ideas like, for instance, resummation of U(t) ex-
pansions or variational approximations to the spectrum.
An updated list can be found in [6].

On the numerical side, powerful Monte Carlo algo-
rithms exist for the solution of quantum many body prob-
lems [7]. In this paper we are mainly concerned with those
belonging to the so-called class of Green function Monte
Carlo (GFMC) procedures.

They may be regarded as the lattice version of the
Feynman–Kac representation [8] for matrix elements of
U(t) that are computed by averaging over ensembles of
suitable random walkers. The dynamics of the walkers is
determined by the kinetic part of the Hamiltonian that
is its off-diagonal matrix elements in the basis of walker
states. The potential, the diagonal matrix elements of H,
enters in the definition of a path-dependent weight which
the walkers carry to represent their relative importance.
In such an approach, the problem is that the weights expo-
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nentially explode or vanish as the walkers diffuse and after
a short time the algorithm becomes completely unfeasible.

To solve this problem there are two standard classes
of solutions:

(1) the introduction of a guiding function for the random
walkers;

(2) a branching mechanism for the walkers population.

Within the former method (see [9,10] for applications to
lattice gauge theories), the measure in the path space is
deformed and the simulation generates guided random
walks according to a guiding function which is inspired
by exactly known properties of the ground state (typi-
cally, its weak and strong coupling approximations). The
disadvantage of the method is that it requires tuning of
the functional form of the guiding function. This can only
be achieved by a somewhat accurate knowledge of the vac-
uum structure. In fact, perfect guidance is equivalent to
the full problem of determining the vacuum wave function.

In the latter solution, branching is introduced among
the walkers to damp their weight variance. Walkers with
low weights are deleted and relevant walkers are repli-
cated. The problem in this case is a rather involved man-
agement of the variable size walker population.

In a recent paper [11], a simple procedure called
stochastic reconfiguration, has been successfully applied
to overcome this problem and perform simulations with a
fixed number of walkers without introducing any guiding
function, which can however be exploited if available.

The aim of this paper is to investigate the application
of this new technique to lattice gauge theories. In particu-
lar, we apply the method to U(1)2 lattice gauge theory as
a simple theoretical laboratory where it is easy to present
the main ideas and discuss the systematical errors intro-
duced by the algorithm as well as their control.

The plan of the paper is the following. In Sect. 2 we re-
view the GFMC with stochastic reconfiguration. In Sect. 3
we apply the algorithm to the U(1)2 model. We discuss
its actual implementation, the optimization of its free pa-
rameters and the numerical simulations. Finally, in Sect. 4
we summarize our results and discuss the perspectives in
the study of realistic gauge models.

2 Review of GFMC
with stochastic reconfiguration

The description of GFMC with stochastic reconfiguration
is equivalent to present the Feynman–Kac formula on a
lattice. For this reason we begin by discussing the simple
example of quantum mechanics in flat space. Let us con-
sider the one dimensional Schrödinger hamiltonian for a
unit mass point particle,

H =
1
2
p2 + V (q) = H0 + V (q), (2.1)

and the problem of computing its ground state wave func-
tion. We define a discrete Markov chain as follows. Let ε
be the time step (not necessarily infinitesimal) associated

to each Markov jump and let the state of the chain be
specified by the position eigenvalue q. Let the transition
function p(q′ → q′′) be

p(q′ → q′′) = K0(q′′, q′, ε), (2.2)

where K0 is the propagator of the free hamiltonian H0

K0(q′′, q′, t) = 〈q′′| exp−tH0|q′〉
=

1√
2πt

exp− (q′′ − q′)2

2t
. (2.3)

An ensemble of walkers can be described at step n by its
probability density Pn(q). It evolves according to

Pn+1(q′′) =
∫
R

dq′ Pn(q′)K0(q′′, q′, ε). (2.4)

We can identify Pn(q) with the wave function of the ab-
stract state |Pn〉 satisfying

Pn(q) = 〈q|Pn〉, (2.5)

and therefore, as is well known, we obtain

|Pn〉 = e−nεH0 |P0〉, (2.6)

for any finite ε.
To make a similar construction with H0 replaced by

H we need an extension of the formalism. We consider
a Markov chain where the state is extended from q to
the pair (q, ω) where ω is a real weight whose dynamics
we shall describe in a moment. The transition kernel is
assigned as follows:

p(q′ω′ → q′′ω′′) = K0(q′′, q′, ε)δ
(
ω′′ − ω′e−εV (q′)

)
,

(2.7)
with the correct normalization∫

R
dq′′

∫ ∞

0
dω′′ p(q′ω′ → q′′ω′′) = 1. (2.8)

In other words, at each discrete step, q diffuses making a
random step with variance 〈(δq)2〉 = ε as before and the
weight ω is multiplied by the exponential factor
exp(−εV (q)).

The probability distribution Pn(q, ω) at the nth itera-
tion evolves according to the equation

Pn+1(q′′, ω′′)

=
∫
R

dq′
∫ ∞

0
dω′Pn(q′, ω′) p(q′, ω′ → q′′, ω′′). (2.9)

To recover a wave function evolving according to exp(−tH)
we must average over the weights and introduce the func-
tion

ψn(q) =
∫ ∞

0
dωωP (q, ω), (2.10)

that satisfies

ψn+1(q′′) =
∫
R

dq′ψn(q′)e−εV (q′)K0(q′′, q′, ε). (2.11)
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If we now write ψn in terms of the associated basis-inde-
pendent abstract state,

ψn(q) = 〈q|ψn〉, (2.12)

we easily see that

|ψn+1〉 = e−εH0e−εV (q)|ψn〉, (2.13)

and therefore, by the Trotter–Suzuki formula, in the limit
ε → 0 we obtain

lim
ε→0

ψt/ε(q) = 〈q|e−tH |ψ0〉, (2.14)

that is, the Schrödinger evolution is completely repro-
duced.

The meaning of the previous manipulations is that we
can numerically compute the Schrödinger semigroup by
averaging over walkers which diffuse according to the ker-
nelK0 and which carry an additional weight ω. The weight
takes care of the potential and is the actual relative weight
of the walkers. As discussed in the Introduction, in the
actual implementation of this method one has to face the
rapidly increasing variance of the weights of an ensemble
of walkers as the evolution time goes by.

Stochastic reconfiguration is a solution to this prob-
lem based on the observation that there are many P (q, ω)
giving rise to the same physical wave function ψ(q). In
particular,∫ ∞

0
dω ωP (q, ω) =

∫ ∞

0
dωωP̃ (q, ω), (2.15)

where

P̃ (q, ω) = δ(ω − 1)
∫ ∞

0
dω′ ω′P (q, ω′), (2.16)

and P (q, ω) and P̃ (q, ω) give rise to the same wave func-
tion ψ(q). The difference between them is hidden in the
weight statistics that is not observable. The advantage of
choosing the representative P̃ (q, ω) among all the P (q, ω)
associated to a given ψ(q) is that it has exactly zero weight
variance by construction since all the weights are fixed to
unity.

The actual implementation of (2.15) in a numerical
algorithm is straightforward. Let us consider an ensemble
of K walkers (characterized by their position eigenvalue
and weight),

E = {(qk, ωk)}k=1,...,K . (2.17)

In the K → ∞ limit we can associate to the ensemble E
a unique well-defined distribution function PE(q, ω). We
now build a new ensemble Ẽ with K walkers and with the
property that when K → ∞ we have

PẼ(q, ω) = P̃E(q, ω). (2.18)

The new ensemble is simply built by extracting walkers
from E and assigning them a unit weight. The walkers with
position qk are extracted with a probability proportional

to ωk. In other words we extract the new K walkers from
the set of old states (the values {qk}) with probabilities

pk =
ωk∑
k ωk

. (2.19)

Repetitions may occur during this multiple extraction;
they change the relative frequency of the old low and high
weight walkers. To see this, let us consider an ensemble of
walkers {(qi, ωi)}i=1,...,K where for simplicity we assume
that all qi are distinct. We want to compute the statistics
of the fractions νi = ni/K of walkers with state qi in the
reconfigured ensemble. Since each new walker is extracted
independently, the probability of building a new ensemble
with ni walkers in the state qi is given by the multinomial
distribution

p(n1, . . . , nK) =
K!

n1! · · ·nK !
pn1
1 · · · pnK

K . (2.20)

The average number of walkers with state qi is

〈ni〉 =
∑

n1+···+nK=K

K!
n1! · · ·nK !

pn1
1 · · · pnK

K ni = Kpi,

(2.21)
and the mean product ninj with i 6= j

〈ninj〉 = K(K − 1)pipj . (2.22)

We conclude that

〈νi〉 = pi, 〈νiνj〉 − 〈νi〉〈νj〉 = − 1
K
pipj . (2.23)

Hence, in the reconfigured ensemble the state qi appears
with a frequency which is precisely pi ∼ ωi. Finite size
correlations between the new walkers are present vanish-
ing with K as K−1. They induce systematic errors in the
measurements that must be eliminated by extrapolation
to the limit K → ∞.

We conclude this section with a comment about im-
portance sampling. The aim of this paper is to show that
it is possible to perform simulations with a fixed size pop-
ulation of walkers without any a priori knowledge of the
vacuum state |0〉. However, it must be emphasized that
whenever a trial wave function for |0〉 is available, it can
easily be included in the algorithm by a unitary tranfor-
mation of H as discussed in [12]. This is straightforward
in the Hamiltonian formulation and therefore analytical
approximations (e.g. variational calculations) can be ex-
ploited to accelerate the convergence.

2.1 Generalization to other models

From the above discussion, it should be clear that the
extension of GFMC with stochastic reconfiguration to a
more general Hamiltonian is possible only when some
structural conditions are true. To be definite we require
the existence of a complete explicit basis {|s〉} such that
H can be written

H = T + V, (2.24)

where
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(i) V is real and has vanishing off-diagonal matrix ele-
ments, and

(ii) T is the generator of a Markov process.

Condition (ii) is simply the statement that the evolution
operator U(t) = exp(−t T ) exists for t > 0 and the kernel

K(s′′, s′, t) = 〈s′′| exp(−t T )|s′〉 (2.25)

is positive and normalized,∑
s′′

K(s′′, s′, t) = 1. (2.26)

In more physical terms, we require to be able to write the
Hamiltonian as a potential term plus a good kinetic term
like, on a generic manifold, the Laplace–Beltrami opera-
tor which is associated to random walks on the manifold.
Interesting models which belong to this class in the Hamil-
tonian formulation are the non-linear O(N) σ model and
the SU(N) pure gauge theories.

2.2 Observables measurements

In this section we discuss how observables can be mea-
sured. The ground state energy is the simplest observable
to be computed. To measure it, we take two arbitrary
states |χ〉 and |ψ〉 with non-zero overlap with the ground
state |0〉 and write

E0 = lim
t→+∞

〈χ|He−tH |ψ〉
〈χ|e−tH |ψ〉 . (2.27)

The state |ψ〉 describes the statistics of the initial state of
the chain. A convenient choice, although not always op-
timal, is to take for |ψ〉 one of the walker states and to
start accordingly the Markov chain always from the same
state. About |χ〉, a good choice is to take the zero momen-
tum state which is annihilated by the kinetic (off-diagonal)
part of H. In other words, this is the generalization (on a
non-flat manifold) of the constant wave function. In this
case we drop the kinetic part of H and obtain

E0 = lim
t→+∞

〈χ|V e−tH |ψ〉
〈χ|e−tH |ψ〉 , (2.28)

where V is the diagonal part of H. From the point of view
of the algorithm, the projection over |χ〉 is nothing but the
recipe of summing over all the walkers with no additional
final state weight.

These prescriptions may be refined in model-dependent
ways, but we shall see that, at least in the model under
consideration, they work properly.

Concerning other operators, let us analyze in some de-
tail the measure of vacuum expectation values of opera-
tors Q which are diagonal in the chosen basis (the posi-
tion eigenstates in the Schrödinger example). They can be
computed as the limit

〈0|Q|0〉
〈0|0〉 = lim

τ→+∞ O(τ), (2.29)

Fig. 1. U(1) N -chain geometry. Definition of the link angles

where

Q(τ) = lim
t→+∞

〈χ|e−τHQe−tH |ψ〉
〈χ|e−(τ+t)H |ψ〉

= 〈0|Q|0〉 + O(e−τ(E1−E0)), (2.30)

where E1 is the energy of the first excited state |1〉 with
non-vanishing matrix element 〈1|Q|0〉. In the above ex-
pression, the limit over t is performed automatically by
the running of the Markov chain. It can be considered to
be reached as soon as equilibrium in the chain is achieved.
The second limit requires some care and to evaluate it we
allow the walkers to diffuse for an additional time τ af-
ter the measurement of the observable. In the following
sections we shall check the rapid exponential convergence
of Q(τ) with increasing τ . Of course, from the τ depen-
dence of Q(τ) the (finite volume) mass gap E1 − E0 can
be extracted.

3 Application to the U(1)2 model

In this section we make the previous discussion more de-
tailed by examining a specific example, the U(1)2 lattice
gauge model. Its Hamiltonian is given by

H =
L∑

p=1

 3∑
lp=1

− 1
2β

∂2

∂θ2lp

+ β(1 − cosφp)

 , (3.1)

where the link phases θli are defined in Fig. 1 and the
gauge invariant plaquette phase φp is

φp = θ1,p + θ2,p+1 − θ3,p − θ2,p. (3.2)

We assume periodic boundary conditions. This lattice
model has no continuum limit because its correlation
length in lattice units remains finite for all values of the
coupling β. Nonetheless, it shares many features with the
more realistic models in higher dimensions and serves to
illustrate the method in an easy case. We are interested in
the numerical calculation of the ground state energy per
plaquette E0/N and of the mean plaquette

〈Up〉 ≡ 〈0| cosφp|0〉. (3.3)
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For these two observables, the first terms in the weak and
strong coupling expansions are known [10]

E0

L
=


β − 1

4β
3 + 89

3840β
7 + O(β11)

0.9833 − 0.1209β−1 + O(β−2) (N ≥ 5),
(3.4)

〈U〉 =


1
2β

2 − 89
960β

6 + O(β10)

1 − 0.4917β−1 + O(β−2).
(3.5)

3.1 Optimization of the algorithm

Let us discuss in this section the tuning of the algorithm.
Its free parameters are

ε, K, r, τ, (3.6)

where ε is the time step in the application of exp(−εH),
K is the size of the walkers ensemble, r is the number of
Markov chain steps between two reconfigurations and τ is
the time which we discussed in Sect. 2.2. The best choice of
τ of course depends on the chosen observable. In principle,
the same holds also for the first three parameters, but for
simplicity, we shall discuss their optimization on general
grounds independently on Q.

The parameter ε sets the scale of the elementary fluc-
tuations of the link phases θ. Since 〈(δθ)2〉 = ε we require
(ε)1/2 ∼ 2π/nθ with large nθ to obtain a good approx-
imation of the continuum diffusion. In our simulations
we choose the conservative value nθ = 50 and therefore
ε = 0.015.

The value of K cannot be fixed. Instead, it must be
varied and an extrapolation to K = ∞ is needed. The
following functional form for all K dependent quantities

Q(K) = Q(∞) +
c

Kα
+ · · · (3.7)

turns out to be general enough to reproduce quite well
the K dependence. In our simulation we extract the three
constants Q(∞), c and α from Q(K) at K = 10, 100,
1000, 5000.

The parameter r controls the frequency of the recon-
figuration process. A small r is useless and expensive. Ac-
tually, reconfiguration must be performed only when the
walkers begin to show a significantly large weight variance.
In that case, reconfiguration is effective. If the variance is
small, then reconfiguration reshuffles the ensemble with-
out useful effects. On the other hand, if r is taken too
large, reconfiguration with a finite K will destroy the in-
formation contained in the ensemble and the systematic
error at fixed K will be large. Our proposal for a choice of
an optimal r is to fix it by looking at the integrated auto-
correlation time of a relevant observable, say the vacuum
energy. We set r = 1 and run the algorithm: the energy
measurements {Ei} show an exponential decorrelation

EnEm − E
2 ∼ Ae−|n−m|/τ , (3.8)

where as usual bars denote the average over the measure-
ments. We then set r ≡ τ . This procedure has two advan-
tages:

(i) the energy measurements taken after each reconfigu-
ration are decorrelated, and

(ii) the autocorrelation τ is independent on K.

Statement (i) holds by construction. Property (ii) follows
from the fact that τ is an intrinsic feature of the chaotic
evolution of each single walker and has no reason to be K
dependent as we have checked explicitly. This is a useful
property for the K → ∞ extrapolation.

In our simulations we consider the U(1)2 model at β =
0.5, 1.0, 1.5, 2.0, 2.5 with L = 8 to reproduce the results of
[10]. In this case we find that the optimal r(β) is roughly

r(0.5) = 40, r(1.0) = 30, r(1.5) = 25,
r(2.0) = 25, r(2.5) = 20. (3.9)

We now present our results for the ground state energy
per plaquette and mean plaquette. For each data point we
performed 105 Markov chain steps.

3.2 Measure of E0

We have computed the vacuum energy per plaquette at
the four values K = 10, 100, 1000 and 5000 on a L = 8
spatial lattice. A fit with the functional form in (3.7) de-
termines the β dependent exponent α(β). In Fig. 2 we
show the linear fit of the numerical measures plotted as
functions of 1/Kα(β). The results of the fit are collected in
Table 1 and compared with the weak and strong coupling
expansions. The results are quite good, especially because
the strong coupling series is only known up to the next
to leading term. The CPU time required for each point is
about one hour on a Pentium 200 processor. Moreover, we
stress that to obtain these results we only needed a very
simple tuning of the algorithm and no additional knowl-
edge of the ground state properties. As can be seen from
the figure, the extrapolation is very near the value ob-
tained with the largest K used. In the present model, it
is fairly easy to obtain analytical approximations for the
ground state energy per plaquette. The Hamiltonian writ-
ten in terms of the gauge invariant phases φp is

H =
N∑

p=1

[
1
β

(
−2

∂2

∂φ2
p

+
∂2

∂φp∂φp+1

)
+ β(1 − cosφp)] , (3.10)

and the independent plaquette approximation gives

E
(Mathieu)
0

L
= β +

1
2β
a0(−β2), (3.11)

where a0(q) is the lowest characteristic value for the even
solutions of the Mathieu equation

y′′(x) + (a0(q) − 2q cos(2x))y = 0. (3.12)
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Table 1. E0/L compared with weak and strong coupling ap-
proximations. The last column shows the relative deviation
between the Monte Carlo (MC) data and the weak or strong
expansions

β Weak MC Mathieu var Strong % ∆

0.5 0.4689 0.4694(2) 0.4690 0.4690 — 0.1
1.0 0.7732 0.7736(2) 0.7724 0.7746 — 0.05
1.5 — 0.8907(2) 0.8909 0.9005 0.9027 1
2.0 — 0.9292(2) 0.9299 0.9435 0.9229 0.7
2.5 — 0.9524(2) 0.9466 0.9594 0.9349 2

0 0.05 0.1 0.15 0.2
1/K

α(β)

0.4

0.6

0.8

1

1.2

1.4

E
0/

L 
   

(L
=

8)

 

β = 0.5
β = 1.0
β = 1.5
β = 2.0
β = 2.5

Fig. 2. Extrapolation K → ∞ for the vacuum energy per
plaquette

A more practical approximation can be obtained by a vari-
ational calculation based on the following simple indepen-
dent plaquette Ansatz

ψ0(φ1, . . . , φN ) = exp

(
λ

N∑
p=1

cosφp

)
. (3.13)

In this case we obtain

E
(var)
0 (β)
L

= β +
1
β

min
λ

[
(λ− β2)

I1(2λ)
I0(2λ)

]
, (3.14)

where In is the nth modified Bessel function. In Table 1,
columns Mathieu and var show the numerical values of
these approximations.

As one can see, they appear to reproduce well the
Monte Carlo data over the whole region of the coupling.
This holds true especially for the estimate computed in
terms of Mathieu functions. However, we stress again that
the Monte Carlo extrapolated data have no systematic er-
rors and have been obtained with a minimum a priori
knowledge. As stated above, any analytical information
on the ground state, like a variational ground state wave
function, can be used for the acceleration of the Monte
Carlo simulation by including in the algorithm an impor-
tance sampling step.

Table 2. 〈U〉 compared with weak and strong coupling ap-
proximations

β Weak MC Strong % ∆

0.5 0.1236 0.1229(2) — 0.6
1.0 0.4073 0.4262(2) — 5
1.5 — 0.6513(2) 0.6722 3
2.0 — 0.7590(2) 0.7542 0.6
2.5 — 0.8074(2) 0.8033 0.5

0 0.1 0.2 0.3 0.4
1/K

α(β)

0

0.2

0.4

0.6

0.8

1

<
U

>
   

 (
L=

8)

 

β = 0.5
β = 1.0
β = 1.5
β = 2.0
β = 2.5

Fig. 3. Extrapolation K → ∞ for the mean plaquette

3.3 Measure of 〈Up〉
The results obtained for the average plaquette are quite
similar to the previous ones. Again, we show in Fig. 3 the
linear extrapolation after the determination of α(β). In
Table 2 we see that the Monte Carlo data is well matching
the analytical series except in the region around β = 1.0.
However, the weak coupling series is not reliable at β = 1.0
since its plot shows a steep variation between β = 1.0 and
β = 1.5 signalling the need for an additional term. The
point at β = 1.5 deviated by about 3% with respect to
the strong coupling series. This can simply be explained
by assuming that it is a too small value for strong coupling
to apply and moreover the next points at larger β match
better, below the percent level. In Fig. 4 we show the de-
pendence of 〈U(τ)〉 on the time τ to check the exponential
convergence to the vacuum expectation value. Again, we
stress that these numbers are obtained without a priori
information and over the whole coupling variation.

To summarize our results we collect in Fig. 5 a graph-
ical comparison of the Monte Carlo data with the asymp-
totic β → 0 and β → ∞ expansions.

3.4 Computational cost

In this section we address the problem of estimating the
computational cost of the algorithm. A realistic computa-
tion must follow two steps:
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0 2 4 6 8 10
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<
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(τ
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(L

=
8,

 β=
1.

0,
 K

=
10

0)
 

MC data
U0+A e

−mτ
  fit
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(a) extrapolation K → ∞ at fixed coupling β,
(b) continuum limit ξ(β) → ∞ where ξ is the correlation

length in lattice units (we do not discuss finite volume
effects and their control).

In performing step (a) we need the computational cost as
a function of K that is the CPU time required to achieve
a given statistical error εstat in the evaluation of an ob-
servable Q. With N Markov chain steps we have

εstat =
σ(β,K)√
N/r(β)

, (3.15)

where σQ(β,K) is the standard deviation of Q measure-
ments and N/r(β) is the number of independent measure-
ments. The dependence of σQ onK is simple. Due to a self-
average effect we expect σQ(β,K) = σ̃Q(β)K−1/2. Our ex-
plicit numerical simulations confirm this scaling law. The
CPU time is roughly proportional to NK since the recon-
figuration process turns out to be only a small fraction of
the computational cost. Therefore

εstat ∼ σ̃(β)√
TCPU/r(β)

, (3.16)

and K cancels. The increase in CPU time associated to
the management of the ensemble is compensated by the
larger statistics. In other words, the cost of stochastic re-
configuration is just the cost of the fit described by (3.7):
it is proportional to p, the number of k values used to
extract Q(∞) from Q(K).

The cost of step (b) is expected to be much more
model dependent. As the continuum limit is approached,
the quantities which vary with β are σ̃(β), r(β) and α(β).
There is no mechanism in this algorithm to prevent slow-
ing due to increasing r(β) when the correlation length in-
creases and the behavior of the algorithm must be studied
in the case of realistic models with diverging correlation
lengths. What we observe in the considered model is a very
mild β dependence of the exponent α(β) suggesting that
(3.7) may hold without the need for a huge K. Moreover,
an advantage of the Hamiltonian formulation is that this
slowing could be eventually reduced by importance sam-
pling as discussed in the end of Sect. 2; in fact, preliminary
investigations show that the use of a good trial wave func-
tion for the ground state can strongly reduce σ̃Q(β) and
allow one to perform simulations with reasonable errors
using relatively small values of K.

4 Conclusions and perspectives

In this paper we applied a recently proposed many body
Monte Carlo algorithm of Green function type to the study
of lattice gauge models in Hamiltonian form. This kind
of algorithms computes the vacuum wave function and
many related quantities by averaging over a set of suitable
weighted random walkers. The method that we discussed
solves the annoying long standing problem of fixing the
walkers’ number without exploiting a priori information
on the ground state structure and is thus quite general.
The trade off is the introduction of a systematic error,
but we showed by explicit simulations in the U(1)2 model
that this can be kept completely under control. The algo-
rithm can be applied to more interesting models like the
non-linear O(N) σ model or SU(N) pure gauge on which
work is in progress [13]. The perspectives of these works
seem interesting expecially in view of the recently pro-
posed improved lattice Hamiltonians [14] for pure gauge
models where we plan to investigate the algorithm effi-
ciency.
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